##########
#Analysis
##########
#Clear workspace (run if desired)
rm(list = ls())
# #List of project directories
# dirs <- list(
# data = "...",
# analysis = "...")
#Load required packages
if (!require(psych)) { install.packages("psych") } ; library(psych)
if (!require(car)) { install.packages("car") } ; library(car)
#Load dataset
load(paste0(dirs$data, "L1.rda"))
#########################################################################
#####################
#Step 1: Scale value
#####################
#Split dataset between countries
L1_D <- subset(L1, subset = (COUN == "1"))
L1_UK <- subset(L1, subset = (COUN == "2"))
##Germany
attach(L1_D)
describe(LISA1)
detach(L1_D)
#########################################################################
##UK
attach(L1_UK)
describe(LISA1)
detach(L1_UK)
#########################################################################
#####################
#Step 2: Reliability
#####################
#########################################################################
##Retest reliability for Germany
attach(L1_D)
cor.test(LISA1, LISA1rt, use = "pairwise.complete.obs")
detach(L1_D)
#########################################################################
##Retest reliability for the UK
attach(L1_UK)
cor.test(LISA1, LISA1rt, use = "pairwise.complete.obs")
detach(L1_UK)
#########################################################################
############################
#Step 3: Construct validity
############################
##Germany
attach(L1_D)
#BFI-2-XS
EXTR <- EXTR1R+EXTR2+EXTR3
AGRE <- AGRE1+AGRE2R+AGRE3
CONS <- CONS1R+CONS2R+CONS3
NEGA <- NEGA1+NEGA2+NEGA3R
OPEN <- OPEN1+OPEN2R+OPEN3
cor.test(LISA1, EXTR, use = "pairwise.complete.obs")
cor.test(LISA1, AGRE, use = "pairwise.complete.obs")
cor.test(LISA1, CONS, use = "pairwise.complete.obs")
cor.test(LISA1, NEGA, use = "pairwise.complete.obs")
cor.test(LISA1, OPEN, use = "pairwise.complete.obs")
#RSES
RSES <- RSES1+RSES2R+RSES3+RSES4+RSES5R+RSES6R+RSES7+RSES8R+RSES9R+RSES10
cor.test(LISA1, RSES, use = "pairwise.complete.obs")
#Health
cor.test(LISA1, HEAL, use = "pairwise.complete.obs")
#Employment status
#1) employed
#2) self-employed
#3) out of work and looking for work
#4) out of work but not currently looking for work
#5) doing housework
#6) pupil/student
#7) apprentice/internship
#8) retired
#[9) none of what is mentioned above]
EMPL.selfempl <- recode(EMPL, "2 = 2; 1 = 1; else = NA")
EMPL.unempl <- recode(EMPL, "3:4 = 2; 1:2 = 1; else = NA")
EMPL.retired <- recode(EMPL, "5 = 2; 8 = 2; 1:2 = 1; else = NA")
EMPL.student <- recode(EMPL, "6:7 = 2; 1:2 = 1; else = NA")
cor.test(LISA1, EMPL.unempl, use = "pairwise.complete.obs")
cor.test(LISA1, EMPL.selfempl, use = "pairwise.complete.obs")
cor.test(LISA1, EMPL.retired, use = "pairwise.complete.obs")
cor.test(LISA1, EMPL.student, use = "pairwise.complete.obs")
#Income
cor.test(LISA1, INCO, use = "pairwise.complete.obs")
#Education
cor.test(LISA1, SCHO, use = "pairwise.complete.obs")
#Age
cor.test(LISA1, AGE, use = "pairwise.complete.obs")
#Gender
cor.test(LISA1, SEX, use = "pairwise.complete.obs")
#ASKU
ASKU <- ASKU1+ASKU2+ASKU3
cor.test(LISA1, ASKU, use = "pairwise.complete.obs")
#I-8
URGE <- URGE1+URGE2
PREM <- PREM1+PREM2
PERS <- PERS1+PERS2
SENS <- SENS1+SENS2
cor.test(LISA1, URGE, use = "pairwise.complete.obs")
cor.test(LISA1, PREM, use = "pairwise.complete.obs")
cor.test(LISA1, PERS, use = "pairwise.complete.obs")
cor.test(LISA1, SENS, use = "pairwise.complete.obs")
#IE-4
ILOC <- ILOC1+ILOC2
ELOC <- ELOC1+ELOC2
cor.test(LISA1, ILOC, use = "pairwise.complete.obs")
cor.test(LISA1, ELOC, use = "pairwise.complete.obs")
#KUSIV3
KUSIV <- KUSI1+KUSI2R+KUSI3
cor.test(LISA1, KUSIV, use = "pairwise.complete.obs")
#R-1
cor.test(LISA1, RISK1, use = "pairwise.complete.obs")
#PEKS
IPEF <- IPEF1+IPEF2
EPEF <- EPEF1+EPEF2
cor.test(LISA1, IPEF, use = "pairwise.complete.obs")
cor.test(LISA1, EPEF, use = "pairwise.complete.obs")
#SOP2
SOP <- PESS1R+OPTI1
cor.test(LISA1, SOP, use = "pairwise.complete.obs")
#KSE-G
SDPQ <- SDPQ1+SDPQ2+SDPQ3
SDNQ <- SDNQ1+SDNQ2+SDNQ3
cor.test(LISA1, SDPQ, use = "pairwise.complete.obs")
cor.test(LISA1, SDNQ, use = "pairwise.complete.obs")
#USS-8
VICT <- VICT1+VICT2
OBSE <- OBSE1+OBSE2
BENE <- BENE1+BENE2
OFFE <- OFFE1+OFFE2
cor.test(LISA1, VICT, use = "pairwise.complete.obs")
cor.test(LISA1, OBSE, use = "pairwise.complete.obs")
cor.test(LISA1, BENE, use = "pairwise.complete.obs")
cor.test(LISA1, OFFE, use = "pairwise.complete.obs")
detach(L1_D)
#########################################################################
##UK
attach(L1_UK)
#BFI-2-XS
EXTR <- EXTR1R+EXTR2+EXTR3
AGRE <- AGRE1+AGRE2R+AGRE3
CONS <- CONS1R+CONS2R+CONS3
NEGA <- NEGA1+NEGA2+NEGA3R
OPEN <- OPEN1+OPEN2R+OPEN3
cor.test(LISA1, EXTR, use = "pairwise.complete.obs")
cor.test(LISA1, AGRE, use = "pairwise.complete.obs")
cor.test(LISA1, CONS, use = "pairwise.complete.obs")
cor.test(LISA1, NEGA, use = "pairwise.complete.obs")
cor.test(LISA1, OPEN, use = "pairwise.complete.obs")
#RSES
RSES <- RSES1+RSES2R+RSES3+RSES4+RSES5R+RSES6R+RSES7+RSES8R+RSES9R+RSES10
cor.test(LISA1, RSES, use = "pairwise.complete.obs")
#Health
cor.test(LISA1, HEAL, use = "pairwise.complete.obs")
#Employment status
#1) employed
#2) self-employed
#3) out of work and looking for work
#4) out of work but not currently looking for work
#5) doing housework
#6) pupil/student
#7) apprentice/internship
#8) retired
#[9) none of what is mentioned above]
EMPL.selfempl <- recode(EMPL, "2 = 2; 1 = 1; else = NA")
EMPL.unempl <- recode(EMPL, "3:4 = 2; 1:2 = 1; else = NA")
EMPL.retired <- recode(EMPL, "5 = 2; 8 = 2; 1:2 = 1; else = NA")
EMPL.student <- recode(EMPL, "6:7 = 2; 1:2 = 1; else = NA")
cor.test(LISA1, EMPL.unempl, use = "pairwise.complete.obs")
cor.test(LISA1, EMPL.selfempl, use = "pairwise.complete.obs")
cor.test(LISA1, EMPL.retired, use = "pairwise.complete.obs")
cor.test(LISA1, EMPL.student, use = "pairwise.complete.obs")
#Income
cor.test(LISA1, INCO, use = "pairwise.complete.obs")
#Education
cor.test(LISA1, SCHO, use = "pairwise.complete.obs")
#Age
cor.test(LISA1, AGE, use = "pairwise.complete.obs")
#Gender
cor.test(LISA1, SEX, use = "pairwise.complete.obs")
#ASKU
ASKU <- ASKU1+ASKU2+ASKU3
cor.test(LISA1, ASKU, use = "pairwise.complete.obs")
#I-8
URGE <- URGE1+URGE2
PREM <- PREM1+PREM2
PERS <- PERS1+PERS2
SENS <- SENS1+SENS2
cor.test(LISA1, URGE, use = "pairwise.complete.obs")
cor.test(LISA1, PREM, use = "pairwise.complete.obs")
cor.test(LISA1, PERS, use = "pairwise.complete.obs")
cor.test(LISA1, SENS, use = "pairwise.complete.obs")
#IE-4
ILOC <- ILOC1+ILOC2
ELOC <- ELOC1+ELOC2
cor.test(LISA1, ILOC, use = "pairwise.complete.obs")
cor.test(LISA1, ELOC, use = "pairwise.complete.obs")
#KUSIV3
KUSIV <- KUSI1+KUSI2R+KUSI3
cor.test(LISA1, KUSIV, use = "pairwise.complete.obs")
#R-1
cor.test(LISA1, RISK1, use = "pairwise.complete.obs")
#PEKS
IPEF <- IPEF1+IPEF2
EPEF <- EPEF1+EPEF2
cor.test(LISA1, IPEF, use = "pairwise.complete.obs")
cor.test(LISA1, EPEF, use = "pairwise.complete.obs")
#SOP2
SOP <- PESS1R+OPTI1
cor.test(LISA1, SOP, use = "pairwise.complete.obs")
#KSE-G
SDPQ <- SDPQ1+SDPQ2+SDPQ3
SDNQ <- SDNQ1+SDNQ2+SDNQ3
cor.test(LISA1, SDPQ, use = "pairwise.complete.obs")
cor.test(LISA1, SDNQ, use = "pairwise.complete.obs")
#USS-8
VICT <- VICT1+VICT2
OBSE <- OBSE1+OBSE2
BENE <- BENE1+BENE2
OFFE <- OFFE1+OFFE2
cor.test(LISA1, VICT, use = "pairwise.complete.obs")
cor.test(LISA1, OBSE, use = "pairwise.complete.obs")
cor.test(LISA1, BENE, use = "pairwise.complete.obs")
cor.test(LISA1, OFFE, use = "pairwise.complete.obs")
detach(L1_UK)
#########################################################################
##########################
#Step 4: Reference values
##########################
#Quote 1: male, lower education, 18-29
#Quote 2: male, lower education, 30-49
#Quote 3: male, lower education, 50-69
#Quote 4: male, middle education, 18-29
#Quote 5: male, middle education, 30-49
#Quote 6: male, middle education, 50-69
#Quote 7: male, upper education, 18-29
#Quote 8: male, upper education, 30-49
#Quote 9: male, upper education, 50-69
#Quote 10: female, lower education, 18-29
#Quote 11: female, lower education, 30-49
#Quote 12: female, lower education, 50-69
#Quote 13: female, middle education, 18-29
#Quote 14: female, middle education, 30-49
#Quote 15: female, middle education, 50-69
#Quote 16: female, upper education, 18-29
#Quote 17: female, upper education, 30-49
#Quote 18: female, upper education, 50-69
##Germany
attach(L1_D)
tapply(LISA1, SEX, describe)
AGE1 <- subset(L1_D, AGE == 18 | AGE == 19 | AGE == 20 | AGE == 21 | AGE == 22 | AGE == 23 | AGE == 24 | AGE == 25 | AGE == 26
| AGE == 27 | AGE == 28 | AGE == 29)
AGE2 <- subset(L1_D, AGE == 30 | AGE == 31 | AGE == 32 | AGE == 33 | AGE == 34 | AGE == 35 | AGE == 36 | AGE == 37 | AGE == 38
| AGE == 39 | AGE == 40 | AGE == 41 | AGE == 42 | AGE == 43 | AGE == 44 | AGE == 45 | AGE == 46 | AGE == 47
| AGE == 48 | AGE == 49)
AGE3 <- subset(L1_D, AGE == 50 | AGE == 51 | AGE == 52 | AGE == 53 | AGE == 54 | AGE == 55 | AGE == 56 | AGE == 57 | AGE == 58
| AGE == 59 | AGE == 60 | AGE == 61 | AGE == 62 | AGE == 63 | AGE == 64 | AGE == 65 | AGE == 66 | AGE == 67
| AGE == 68 | AGE == 69)
detach(L1_D)
attach(AGE1)
describe(LISA1)
detach(AGE1)
attach(AGE2)
describe(LISA1)
detach(AGE2)
attach(AGE3)
describe(LISA1)
detach(AGE3)
attach(L1_D)
#########################################################################
##UK
attach(L1_UK)
tapply(LISA1, SEX, describe)
AGE1 <- subset(L1_UK, AGE == 18 | AGE == 19 | AGE == 20 | AGE == 21 | AGE == 22 | AGE == 23 | AGE == 24 | AGE == 25 | AGE == 26
| AGE == 27 | AGE == 28 | AGE == 29)
AGE2 <- subset(L1_UK, AGE == 30 | AGE == 31 | AGE == 32 | AGE == 33 | AGE == 34 | AGE == 35 | AGE == 36 | AGE == 37 | AGE == 38
| AGE == 39 | AGE == 40 | AGE == 41 | AGE == 42 | AGE == 43 | AGE == 44 | AGE == 45 | AGE == 46 | AGE == 47
| AGE == 48 | AGE == 49)
AGE3 <- subset(L1_UK, AGE == 50 | AGE == 51 | AGE == 52 | AGE == 53 | AGE == 54 | AGE == 55 | AGE == 56 | AGE == 57 | AGE == 58
| AGE == 59 | AGE == 60 | AGE == 61 | AGE == 62 | AGE == 63 | AGE == 64 | AGE == 65 | AGE == 66 | AGE == 67
| AGE == 68 | AGE == 69)
detach(L1_UK)
attach(AGE1)
describe(LISA1)
detach(AGE1)
attach(AGE2)
describe(LISA1)
detach(AGE2)
attach(AGE3)
describe(LISA1)
detach(AGE3)
attach(L1_UK)
#########################################################################
################################
#Step 5: Descriptive statistics
################################
##Germany
attach(L1_D)
#Age
summary(AGE)
sd(AGE)
#Proportion women
table(SEX)
#Educational level
table(QUOT)
detach(L1_D)
#########################################################################
##UK
attach(L1_UK)
#Age
summary(AGE)
sd(AGE)
#Proportion women
table(SEX)
#Educational level
table(QUOT)
detach(L1_UK)